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Inthis paper, a lattice Boltzmann (LB) scheme for convection diffusion onirregular
lattices is presented, which is free of any interpolation or coarse graining step. The
scheme is derived using the axioma that the velocity moments of the equilibrium
distribution equal those of the Maxwell-Boltzmann distribution. The axioma holds
for both Bravais and irregular lattices, implying a single framework for LB schemes
for all lattice types. By solving benchmark problems we have shown that the scheme
is indeed consistent with convection diffusion. Furthermore, we have compared the
performance of the LB schemes with that of finite difference and finite element
schemes. The comparison shows that the LB scheme has a similar performance as the
one-step second-order Lax—Wendroff scheme: it has little numerical diffusion, but has
a slight dispersion error. By changing the relaxation paranaetiee dispersion error
can be balanced by a small increase of the numerical diffusi@ooo Academic Press
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1. INTRODUCTION

In the last decade lattice Boltzmann schemes have been successfully applied to the a
sis of a variety of complex physical phenomena, such as turbulent flow, natural convect
and multi-phase flow [1-4]. However, less complicated phenomena like (convection) dif
sion have hardly been studied [5-8]. This is probably due to the vast reservoir of alterna
finite element and finite difference schemes, for solving the convection-diffusion proble
But these simple phenomena are ideal for investigating ways to improve the LB methoc
ogy [8]. Hence, in this paper we investigate whether the LB methodology can be exten
to irregular grids in a natural way.

The problem of irregular lattices has previously been addressed in a few papers [9—
using either coarse-graining or interpolation techniques. These techniques imply a sig
icant departure from the traditional framewaork of the lattice Boltzmann scheme, there
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losing its attractive properties. Moreover, these techniques exhibit significant numer
diffusion and do not satisfy conservation laws [12].

In this paper we will derive the LB scheme for irregular lattices by applying the san
framework as for Bravais lattices, which is developed in Refs. [8, 13]. The key element
this framework is that the velocity moments of the equilibrium particle distribution functic
must equal those of the classical Maxwell-Boltzmann distribution.

For convection diffusion it is sufficient that the velocity moments up to second order ¢
satisfied [4]. In that case the scheme is Galilean invariant and will show little numeri
diffusion. It has been shown that the constraints for the velocity moments are satisfied
highly symmetric lattices, such as the hexagonal lattice and the nine-velocity square lat
[1, 4, 14].

For simplicity sake, we only consider lattices having lattice (Wigner—Seitz) cells wi
only twofold rotational symmetry. Hereby, we extend our previous studies on convecti
diffusion problems on orthorhombic lattices [6, 7]. In this paper we include rest particle
which are shown to give a major improvement to the accuracy of the scheme [4].

Before deriving the scheme for irregular lattices, we first apply the framework to derive |
convection-diffusion scheme for the orthorhombic lattice with rest particles. Subsequer
the same framework is applied to derive the scheme for convection diffusion on 2-D irregt
lattices with rectangular lattice cells. Finally, the LB-schemes are compared with a num
of the traditional finite difference and finite element schemes using benchmark proble
in order to assess the merits and shortcomings of the LB schemes.

2. LB SCHEME FOR ORTHORHOMIC LATTICES

In this section, a LB scheme is derived for convection diffusion on orthorhombic lattice
For the convection-difussion problems considered in this paper we assume: (1) isotropic
fusion and (2) an externally imposed velocity field, which is uniform and time independe
Under these assumptions the convection-diffusion equation reads

dpg +U-Vpg = DV?pg. (1)

Here pq is the convected physical quantity, which can be a mass density of a tracer or
energy density (i.e., temperatura)is the velocity field, and is the (thermal) diffusivity.

Lattice Boltzmann schemes describe convection diffusion by the time evolving parti
distribution functiong; (x, t). This function states the number density of particles at lattic
sitex and timet moving with velocityc; = Ax; /At along the lattice link connecting the
sitesx — Ax; andx. The dynamics on the macroscopic scale is then obtained by summ
the particle distribution over all states; i.e., the densitygi&c, t) = >, gi (X, t).

At each time step, the lattice gas particles propagate to neighbouring lattice sites, w
they collide with other particles. Furthermore, the particles can change their momen
by interaction with externally imposed fields, such as the velocity field in the convectic
diffusion problem. The propagation and collisions of lattice gas particles are describec
the so-called lattice Boltzmann equation, which is a discretisation of the classical Boltzm:
equation, having a linearised collision integral. In its most general formulation the latti
Boltzmann equation reads

G X+ AX 4+ AD — g () = Qij[g;(x. ) — g5x. D). @)
i
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Here,gieq(x, t) is the local equilibrium distribution, which is invariant under collisions. The
operatorQ;; controls the collisions between the lattice gas patrticles. In the more simpilifi
case of the lattice-BGK scheme [14], the collision operator reduces te —wé;; . Because

of its computational simplicity this paper is restricted to the lattice-BGK scheme.

The local equilibrium distributiorg:(x, t), follows from the requirement that its velocity
moments must equal the moments of the classical Maxwell-Boltzmann distribution [1
For second-order accurate solutions the following constraints have to be satisfied at ¢
lattice site for each cartesian componeng, cf. Ref. [4],

> g =py 3)
i
D G0 = (= pgla, 4)
i
D GaGipt = TIg) = pgC2oup + PgUalp. (5)
i

Here j, is a component of the equilibrium mass flux densﬂ)‘Zﬂ is a component of the
equilibrium momentum flux density tensor, atds a free model parameter.

Because of our restriction to orthorhombic lattices, constraint Eq. (5) is not satisfied
the case of flow fieldsi, which are not parallel to one of the principal axes of the lattice
But for uniform flow fields, parallel to one of the principles axes of the lattice, the schen
will be Gallilean invariant.

The form of the equilibrium distribution, compatible with the two-fold rotational sym-
metry of the orthorhombic lattice, and satisfying constraints Egs. (3)—()$08, is given

by

eq_ . G-u (c-u? .
g —w|pg|:1+c—§+q27c§ |f|750 (6)

Q=pg— Y " (7)

i£0

with weight factors, satisfying ;, w; =1, given by

c? .
wp = 2_C|2 ifi 20 (8)
— L %
wo—l—Zw,— - —- 9
i£0 Cs

The indexi =0 denotes rest particles. Becaugemust be positive, the thermal velocity
can only be set to a value in the range 6 < cy. Here,cq is the thermal velocity for a
lattice gas without rest particles.

By applying the Chapman—Enskog procedure, cf. [8], one obtains the expression for

diffusion coefficient
1 1
D=c2(=—-Z|At 10
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which is an identical expression as derived for diffusion [8], and hydrodynamics [1]. T
range of the relaxation parameter is@ < 2. However, in the range @ < 1 the scheme

is consistent with diffusion for a limited range of large time-scale and long wave-lengt
[8]. Hence, the practical range of the relaxation parametekiak 2.

3. LB SCHEME FOR IRREGULAR LATTICES

Starting from the assumption, as observed by Koelman [1], that the constraints for
equilibrium fluxes also hold for irregular grids, a convection-diffusion LB scheme fc
these grids is derived. Recall that we only consider irregular grids with twofold rotatior
symmetry and & + 1 particle velocities, as sketched in Fig. 1. Furthermore, isotrop
diffusion and uniform time-independent flow fields are assumed.

The lattice gas particles associated with the particle density distribgtiant) at lattice
sitex, are thought to be located within the Wigner—Seitz cell. This control volume is defin
as the lattice cell with boundaries at the midpoint of the lattice links and normal to
these links. In the case of lattice links with opposite direction having unequal lengths,
lattice site is not in the centre of the Wigner—Seitz cell. This is similar to the so-called c
vertex finite volume method [18].

As in LB schemes on Bravais lattices, the particle velocities are defingdbyx; / At,
so the particles always move to neighbouring lattice sites at subsequent time steps.
irregular grids the velocities may vary with the location of the lattice site. Hence, v
denote the velocities as a function of their locatigrix) = AX; (x)/At. Note that particles

FIG.1. Irregular lattice with rectangular Wigner—Seitz cells (indicated with dashed lines). Also shown are
pre-collision velocity vectors; (x) (i =1, 2, 3, 4), of particles populating lattice site located between regions
with different lattice spacing, i.e¢; # ;...
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propagating from the same lattice site butin opposite direction may have different velociti
i.e., G (X) #Gi.(X), with i x indicating the opposite direction of

It proves to be more convenient to work with the particle number distribiNi@r, t) =
g (X, 1) AV (x), instead of the traditionally used particle number density distribgion t).
Here,AV (X) is the volume of the Wigner—Seitz cell surrounding lattice site

Another important notice to make is that in normal physical practice, fluxes are rea
defined only for the surfaces enclosing the control volume considered. Fortunately,
regular lattices the definition of the equilibrium fluxes at the lattice site does not introdu
an error. But for irregular lattices this definition does produce an inconsistent scheme.

Hence, the constraints Egs. (3)—(5) must be applied to the fluxes at the boundaries o
Wigner—Seitz cell, surrounding the lattices site considered. The constraints for an irreg!
lattice read as

M(X) = Z NEYX) = pgAV (%) (11)
eq _ N8y )
Fieq(x) _ N (X)) — N;,'(X — AX;)
At
= pg(X)(& - WAS (X) (12)
' eq . _ ) eqry, :
FoIx) = G (X)INT(X) + Gy (X — AX)N;L'(X — AX;)
At
= [pg(0)CZ + pg(X) (& - W] AS (X). (13)

Here, M (x) is the total mass of the particles in the Wigner—Seitz cell located Bf(x)

is the net equilibrium mass flux arriving athrough the surface area of the Wigner—Seitz
cell, AS(x), located between lattice sitgsandx — Ax;. Notice that lattice spacingx;
depends on the locatiorof the lattice cell. The unit vecta = ¢; /¢; indicates the direction
of the particle velocityc; . Fieq(x) is the force the lattice gas exerts on the boundary of th
Wigner—Seitz cell, midway between the lattice skesdx — Ax;. Orin other WOI’dSFieq(X)

is the the momentum flux arriving atthrough the surface areaS (x).

By dividing the mass flux'7(x) and the momentum fluk*%x) by the surface area of
the Wigner—Seitz cell, one obtains respectively the equilibrium mass flux dejjSit)
and the equilibrium momentum flux densifi£3 (x), crossing the particular boundary of
the Wigner—Seitz cell.

Starting from Egs. (11)—(13) and the velocity §gtx)}, one obtains after some straight-
forward algebra, the expression for the equilibrium distribution,

NEYX) = wi (%) pg(X) AV (X) [1+ qc‘gu + ngﬁ ifi #£0 (14)
No 00 = pg()AV (x) — Y~ NF(x) (15)
i£0
with the local weight factow; (x) defined as
2
i (X) = % (16)

G ([Ci (X) + G (X)]

After recalling thatN°?= g°*AV, one observes that the expressions Egs. (6)—(7) for tr
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equilibrium particle density distributiog™® also hold for irregular grids. The effects of
variable lattice spacing are absorbed in the weight faatp(s).

After having constructed the equilibrium distribution for irregular grids, we arrive at th
problem of how to define the lattice Boltzmann equation. This problem is not trivial,
for irregular grids the traditional lattice Boltzmann equation for Bravais lattices, Eq. (2
does not hold for irregular grids. This becomes evident when considering the case of gl
equilibrium (og(x) = N°Yx)/AV (x) = po). Clearly, a proper lattice Boltzmann equation
should leave the global equilibrium distribution invariant. This is clearly not the case f
Eq. (2) which requires thatl®d(x — Ax;, t + At) = N*x, t), which is generally not true
for irregular grids.

However, because of Eq. (12) invariance of the global equilibrium distribution is obtain

by
NI (x — Ax;, t 4+ At) = NEI(x, t) — T, t) At. (17)

We assume that also for the general case, Eq. (17) describes the evolution of the equilib
part of the distribution function.

If the description of the evolution of the non-equilibrium part of the particle distributior
N"%= N; — N°9, is also known, then we are able to construct the lattice Boltzmann equati
for irregular grids. This description can be obtained by observing the behaviour of the n
equilibrium part of the particle distribution in the case of zero flow field 0 and a constant
density gradienty pqy(X) = constant

For a regular lattice the non-equilibrium particle distribution of a density field with
constant gradient is given BY"*9= — AV (x)w; ¢ - V pgAt/w, cf. Ref. [8]. This expression
is independent of the lattice spacing. Analysis shows that this expression is valid for irreg
grids as well. Hence, the non-equilibrium part of the particle distribution should evolve
the same way for both regular and irregular grids, as is described by

N2 — Ax;, t + At = (1 — w)NTAX, 1), (18)

* *

By adding Egs. (17)—(18), one finally arrives at the complete lattice Boltzmann equat
for irregular grids

Nis(X — AXi, t + At) = N*%x, t) — TP, ) At + (1 — 0)NTAx, 1). (19)

*

Here, the equilibrium distribution is given by Egs. (14)—(15), the equilibrium mass flo
is given by Eq. (12), and the non-equilibrium distribution function is giverNdy(x) =
Ni (x) — N%9x). The expression for the diffusion coefficient, Eq. (10), also holds for irre
ular lattices.

Notice that for regular gridsNx, t) — I'F%x, t) At = NZ(x, t), and consequently
Eqg. (19) becomes identical to the lattice-BGK scheme, which is obtained by seffirg
wdjj in EQ. (2).

4. NUMERICAL ANALYSIS

The consistency and accuracy of the LB scheme for both regular and irregular g
are analysed numerically. The analysis is done by comparing numerical solutions to
analytical solutions of some benchmark problems. These benchmarks are:
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e The 1-D steady state problem withinhomogeneous boundary conditions and unifc

flow field.
e The 1-D transient problem with a Gaussian hill as an initial density field in a unifor

flow field.

4.1. Gradient resolution. In order to observe the behaviour of the lattice Boltzmanr
scheme at boundaries with steep gradients, we solve a 1-D benchmark problem cons
ing inhomogeneous boundary conditions and a uniform flow figldWith the boundary
conditions denoted as(0) = o andp (L) = pr, the solution of the benchmark reads as

[1 — exp(Pe- x/L)]
[1 — expPe)]

p(X) = p + (pr —p1) (20)
HerePe=uL/D is the Peclet number. For Peclet numbies- 0.1 the density field has
a steep gradient near the right boundary. These gradients are known to induce nume
oscillations in various numerical schemes. Hence, this benchmark is a good test for
ability of the LB scheme to resolve steep gradients.

The benchmark is solved for the caselo&20, Ax=1, At=1, pq(0) =200, and
pg(L) =100. The velocity field is uniform and positivgx) = u > 0. The boundary condi-
tions are imposed by the following constraints at the exterior lattice sites,

> G(x=0=200 and > g(x=L)=100 (21)

The implementation of these boundary conditions is straightforward: after collision a
propagation, new lattice gas particles have to be injected into the computational dom
The amount of particles to be injected is determined by the constraints of Eq. (21).
Furthermore, we have set the thermal velocgy= % the grid Fourier numbelFo* =
DAt/Ax?=0.1, and the grid Peclet numbee' =uAx/D = 0.1, 0.5, 1, 5. The numerical
solutions together with the analytical solutions are shown in Fig. 2a. Observing these res

a) )
2004 200-+
180 180
2 160 2 160
= =
S 2
o)
0O 140 0O 140
120 120
100 +————————————— —~+ 4004t 4

5 20 0 5 20

5 5
X coordinate X coordinate

FIG.2. Comparison of numerical solution (symbols) with analytical solution (lines) for boundary value prol
lem pq(0) =200 andog(L) = 100, withL = 20. (a) The solution for a Bravais lattice with lattice spacixg= 1
and grid Pecletnumb®&e* = 0.1, 0.5, 1, and 5. (b) The solution for anirregular lattice, which is graded fara 2
(nearx =0)toAx = 0.1 (nearx = L). Here the grid Peclet number assumes the vahges: 0.1, 0.2, 0.5, 1.0, 2.0,
5.0, 10.0. Note the numerical oscillations in the upper right corner of Fig.2a, induced by the steep gradient r
the boundary.
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one sees that the LB scheme quite accurately resolves the analytical solution for low
Peclet numbere* < 1. At higher grid Peclet numbers spurious oscillations occur, whic
are induced by the sharp gradient at the right boundary.

The magnitude of the spurious oscillations can be decreased a little by lovegrang
increasing the Courant numb@r = uAt/AXx, but the effect cannot be eliminated.

The benchmark is also solved using a lattice-BGK scheme for an irregular lattice, wh
is refined at the right boundary. The lattice spacing is varied froxn=2.0 (x=0) to
Ax=0.1 (x=L). Because the lattice spacing varies, the grid Peclet and Fourier numb
vary with the locatiorx, i.e., Pe* = Pe*(x) andFo* = Fo*(x). Hence, if in the text below
we refer to the grid Peclet and Fourier numbers, it is implied it is with reference to the u
lattice spacingAx = 1 (if not stated otherwise).

The parameter settings of the previous calculations are mainta:@nedﬁ andFo* =0.1.
The Peclet numbePe* is varied from 0.1 to 10. The numerical solutions are depicted i
Fig. 2b, together with the analytical solutions.

Figure 2b shows that by using grid refinements numerical oscillations are eliminat
even at high Peclet numbelP&* > 1. By decreasing the lattice spacirg at locations
with steep gradients one lowers the local grid Peclet nurfggix) = uAx(x)/D to the
regime ofPe“(x) <2, where no oscillations occur. If the gradient is small, the local gri
Peclet number can be large.

4.2. Transient behaviour.The transient behaviour of the lattice Boltzmann scheme |
investigated by solving a 1-D benchmark problem of a Gaussian hill in a uniform veloc
field. The numerical solution is calculated by the LB scheme on a regular lattice. T
consistency and stability of the scheme is analysed with the method of moments, by wi
errors in phase velocity, diffusion, and symmetry of the Gaussian hill are calculated.

The solution of this benchmark is given by

p(x) = po P~ %0)?/20%(1)]
o ey

(22)

Here, pg is the initial height of the Gaussian hil is the initial position, andy the initial
width of the hill. Hence, the initial Gaussian profile is described by

pg(X, 0) = poexp[—(x — x0)*/203]. (23)

Method of moments.The density profiles after a travel timieare analysed using the
method of moments [15]. The moments of the density field are defined as

Mo(t) = /,Og(X, Ddx~ ) pg(NAX, DAX, (24)
My(t) = /ng(x, Ddx~ Y xpg(NAX, t)AX, (25)
Ma(t) = [ (= wZppx D x> Y x = w7pp(NAX. DAX. (26)

Ma(t) = [ (x = w7ppx, D x> 30X = w7pp(NAX. DAX. (27)

n
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The moments of a Gaussian distribution, travelling with velogitgre equal to

Mo(t) = Mo, (28)
My (t)/Mo = u(t) = Xo + ut, (29)
Ma(t)/Mo = o2(t) = o2 + 2Dt, (30)
Ms(t)/Mg = S(t) = 0. (31)

From the change in time of the mean value, one can obtain the error in the average
velocity 80 =[u(te) — Xo] /te. The error in the diffusivity D, i.e., the numerical diffusivity,
is obtained from

36 = 1700 =ct]
2te

—D. (32)
The third-order moment is related to the skewness of the distribution. The error in skewn
is [15]

S

§8= .
6teM0

(33)

The benchmark is solved on a Bravais lattice with a lattice spating 1 and 128 lattice
spacings long. The timestep is setAd= 1. Initially, the center of the Gaussian profile is
located atxg = 32. Other parameters are set equai&o: 8 andpgp = 100.

The initial particle distribution corresponding with the initial Gaussian hill is set equc
to the first-order perturbation distribution, as derived in Ref. [8],

. At
gi(X, t =0) =g (pg) — wi ;(q— —u) - Vpg(x,t =0), (34)

wherew is the collision frequency defined in Eq. (19). At the boundaries of the lattic
periodic boundary conditions are applied.

Two sets of calculations are performed: (1) at a moderate grid Peclet nirgiberlO,
and (2) at a high grid Peclet numbeg* = 1000. There are two free parameters in the LB
scheme, which are varied in our analysis: the Courant number in the raGge-af At/ AXx
between @M1 < Cr <1, and the relaxation parameter between the range<abk 2. The
range ofw < 1 is not investigated, as it is known from our previous study [8] that in thi
regime inconsistency with diffusion can occur already at moderate gradients.

The density profiles at tim& =40Ax/Cr have been analysed using the method of
moments. The errors in the diffusivity and the skewn&Bsands S, found with the method
of moments, are plotted in Fig. 3 as a function of the relaxation parameterd the
Courant numbef€r. The error in velocity is not shown, as the velocity calculated fron
the first moment is found to be equal to the pre-set valup to machine accuracy for all
simulations.

Observing Fig. 3, one sees that the numerical diffusion is small for low valuesotl
Cr. For the case = 1 the error is zero (up to machine accuracy) for both casBs‘et 10
andPe* =1000. The erroB D increases fot — 2 or Cr — 1. The increase in numerical
diffusion is accompanied with an decrease of the skewf&ssvhich is preferable for
calculations with high grid Peclet numbers.
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g Pe*=10

. P Instable

FIG. 3. Contour plots of the errors in diffusivity and skewness of the lattice Boltzmann scheme using t
method of moments for the cadess = 10 andPe" = 1000. The relaxation parameter is varied in the rangevl< 2
and the Courant number in the rang@D< Cr < 1. The diffusivity error is in %, and the plotted value of the
skewness is 100 timekS, The regions of instability are also indicated.

There are some limits for the values ofandCr due to instability of the LB scheme
(the spurious oscillations grow exponentially). At high values ¢ivo regions of stability
remain, i.e.Cr— 0 andCr — 1. At Pe* = 10 the region ofCr — 1 is extremely small and
at Pe" = 1000 the region oCr — 0 is extremely small. Therefore, they are not shown ir
Fig. 3. For any value of the Courant number, there is a range of valuaswvdrich gives
stable results. By a suitable choicewfany combination of the grid Peclet numkeg*
and Courant number (satisfying the CFL-conditj@n| < 1) can be reached with the lattice
Boltzmann scheme.

5. COMPARISON WITH TRADITIONAL SCHEMES

In order to assess the merits and shortcomings of the LB scheme, its solution of
above investigated benchmark is compared to those of traditional numerical schemes.
following schemes are used: standard Galerkin (which is equivalent with the finite differer
scheme with central differencing in space and forward differencing in time), denoted
CDFD; finite difference scheme with “optimal” upwinding and forward differencing ir
time (FD+) [16]; finite element scheme with first-order streamline upwinding and implic
time integration (SUPG); and a Galerkin finite element scheme with quadratic elements
Adams—Bashfort (semi-implicit) time integration (ABG).

It must be noted that the FD+ scheme is equivalent to a second-order one-step L
Wendroff scheme [18, 19]. Furthermore, illsoequivalent to the lattice Boltzmann scheme
with the relaxation parameter setdo= 1, as we show in the Appendix. The solutions of
the FD+ scheme are actually calculated with our lattice Boltzmann code. The solution:
the other traditional numerical schemes are obtained by using the general purpose f
element package FIDAP [17].
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TABLE |
Diffusivity and Skewness Errors andL,-Norm of Various Schemes

Pet Scheme sD/D (%) 8S(%) L, norm
10 CDFD —100.00 1.60 0.528
10 FD+ 0.00 1.40 0.168
10 LB 0.44 0.25 0.033
10 ABG 1.50 0.02 0.006

1000 SUPG 45835.00 6.28 0.968
1000 FD+ -0.03 5.58 0.449
1000 LB 0.43 0.84 0.159
1000 ABG 4.64 6.64 0.066

All above-mentioned numerical schemes, except ABG, are low-order schemes (firs
second order in space and/or time). ABG is a high-order scheme (fourth order in sp
and second order in time) and is similar to the more familiar Crank—Nicolson Galerk
scheme.

The benchmark problem is solved for the cd& =10 andCr=0.2, and the case
Pe* = 1000 andCr = 0.4. The solutions of the LB scheme are calculated using the valu
®w=1.8in the case oPe* =10 andw = 1.4 in the case oPe* =1000. The values of the
relaxation parameter are well within the region of stability and show little skewness (s
Fig. 3).

The simulation results are shown in Fig. 4 and Table I. Figure 4 shows the Gauss
profile at timet =40/Cr. The errors in diffusivity and skewness are calculated with th
method of moments and are listed in Table |. Furthermore, we have calculategttioem
as a measure of the overall accuracy. We have definedtimorm as

N
L= \/<Z|Pg(xi)_ﬁg(xi)|z/N>~ (35)

i=1

Herepg(x;) is the exact solution at grid point andoy(x;) is the numerical solution.

As indicated in Fig. 4 and Table I, the standard low-order finite difference and fini
element schemes (CDFD and SUPG) clearly show the problems that can arise when sol
transient convection-diffusion problems: the numerical scheme either shows large spur
oscillations, or has large numerical diffusion, resulting in a poor overall accuracy.

Better performance is obtained by the FD+ scheme and the lattice Boltzmann sche
Both schemes have little or zero numerical diffusion, but have numerical oscillations c
to dispersion errors. This behaviour is typical for a second-order scheme.

The accuracy of the lattice Boltzmann scheme can be improved over that of the F
scheme by choosing an appropriate value for the relaxation paramet@reby, the nu-
merical oscillations are reduced at the expense of a little numerical diffusion.

The overall accuracy of the high-order scheme (ABG) is one order better than all otl
lower-order schemes. The ABG scheme has little numerical diffusion and dispersion erl
(which is an effect of the odd-order truncation error, and hence, is absent in the fourth-ot
ABG scheme).

Irregular lattice. The transient 1-D benchmark is also solved on an irregular grid, fc
the lattice Boltzmann scheme, the Lax—Wendroff scheme (FD+), and the ABG scheme
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FIG. 4. Comparison of numerical solution (symbols and dashed lines) with analytical solution (solid line
for the transient 1-D benchmark problem. The LB scheme is compared with various other schemes for grid P
numbers and Courant numders: P& = 10 andCr =0.2 (left side of figure), and (2pe" = 1000 andCr =0.4

(right side of figure). For these two cases the values of the relaxation parameter of the LB scheme are respec
w=18andw=1.4.

The locations of the nodes of the irregular gkidare specified by

Xn

n forn=0,1,...,64
0.75+ 0.5 cosfr(n — 64)/128]

(36)

Xn+1 — Xn forn=65,...,196 (37)



778

VAN DER SMAN AND ERNST

100 — B (w=18) 100 — ABsG
Cr(Ax=1)=0.02 Cr(ax=1)=0.2
80 — 80
p 60 — 60 —
& 40 40—
20 — 20 —
0 v 0
IIII|IIII|I||II I|l|||||||||||l
0 50 100 150 0 50 100 150
100 — - 100 — 1B (0=14)
& EX)F})): 0.2 Cr (Ax=1)=02 }
80 — 80
p 60 — 60 —|
g 40— 40 —|
20 — 20 -
0 — Y 0 —
L ] #
\II!IIIIII’IIIIl IIII|IlII|||ll|

0

50 100

X

150

0

50 100 150

FIG. 5. Numerical solution (symbols and dashed lines) and analytical solution (solid lines) for the transic
1-D benchmark problem using an irregular grid. Solutions are shown for timmd€)/Cr (left peak) and = 80/Cr
(right peak). The ABG scheme is solved with the grid Peclet nuriRées 100 and the Courant number©f = 0.2.

The LB scheme is solved with the grid Peclet numBer= 100, and various Courant numbers and relaxation
parameter values, as indicated in the legend of the graphs.

The solution is computed for the grid Peclet numBer= 100. In Fig. 5 the solutions of
the various schemes are depicted for time stepd0/Cr andt = 80/Cr.

From Fig. 5 and Table II, one can see that the behaviour of the various schemes is sin
for regular lattices and irregular grids. The second-order schemes (Lax—Wendroff and |
show numerical oscilations and the high-order scheme (ABG) shows improved accur
with little dispersion errors. Again the LB scheme performs better than the Lax—\Wendr

TABLE Il
L,-Norm of Benchmark Solution on Irregular
Grid for Various Schemes

t Scheme L, norm
40/Cr LB(w=1.0) 0.295
LB(w=1.4) 0.073
LB(w=1.8) 0.129
ABG 0.017
80/Cr LB(w=1.0) 0.631
LB(w=1.4) 0.184
LB(w=1.8) 0.211
ABG 0.014
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scheme. The results concerning the overall accuracy indicate there are some optimal v
for the relaxation parameter and Courant number. It is left to the reader to investigate |
to find these values for his type of problem.

6. PERFORMANCE OF THE LB SCHEME IN 2-D

The performance of the LB scheme is also investigated for two-dimensional lattic
Hence, the benchmark of the propagation of a Gaussian profile in a uniform velocity fi
is solved for both regular and irregular 2-D lattices.

The benchmark is solved for the following parameter settipgf:= 100, Cr=0.1,
w=14, andoZ=8. The direction of the uniform velocity field is taken at an angle
with the principle axes of the lattice, i.eu,=u(& + %éy). In this way the occurrence
of crosswind diffusion can be investigated. Surface plots of the Gaussian profile at ti
t =20/Cr are shown in Figs. 6 and 7 for the Bravais lattice and the irregular grid, respe
tively.

By calculating the moments from the simulation results, using

Maxx =YY (X = m)?p(X, y) (38)
X oy

Mayy =YY (v — 1y)?p(X, ), (39)
X oy

the diffusion coefficientdyy and Dyy in x- and y-direction are estimated. For both the
Bravais lattice and the irregular grid it is found thaj, = Dyy =0.001, implying that
diffusion is isotropic and numerical (crosswind) diffusion is insignificant.

100

y 0o

FIG. 6. Gaussian profile at=20/Cr on a Bravais lattice, solved with the LB scheme. The centre of the
profile is located at (16, 16) at=0 and has the velocity = (1, %). Other parameter settings &¢e =100 and
Cr=01.
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100

y 00 «

FIG. 7. Gaussian profile dt=20/Cr on an irregular 2-D grid, solved with the LB-scheme. The centre of the
profile is located at (16, 16) at=0 and has the velocity = (1, %). Other parametersettings de* =100 and
Cr=0.1.

7. CONCLUSIONS

In this paper, a convection-diffusion lattice Boltzmann scheme for irregular grids
presented. Like the LB schemes for Bravais lattices, our scheme follows the traditio
two-step mechanism of (1) the collision of lattice gas at the lattices sites, and subseque
(2) the propagation to adjacent lattice sites. Hence, there is no need of any interpola
step or coarse graining step, which is needed in previous attempts to map the LB sch
to irregular grids [12].

The scheme forirregular grids is derived using the same framework, which is traditione
used to derive LB schemes for Bravais lattices [1, 4, 8, 13]. The keypoint of this framewor}
that velocity moments of the equilibrium distribution equal those of the classical Maxwel
Boltzmann distribution.

By solving benchmark problems we have shown that our schemes are consistent
convection diffusion for both regular and irregular grids. It must be noted that we ha
tested the consistency for only uniform flows. In subsequent papers we will investig
these schemes for the more general case of non-uniform flows.

The behaviour of the LB schemes is similar to second-order finite volume/differen
schemes, like the Lax—Wendroff scheme. (Even more, we have shown that the LB sch
is identical to the Lax—Wendroff scheme in the case of the relaxation parametepsetit)
The convection-diffusion LB scheme has little numerical diffusion, but has some numeri
dispersion. This behaviour is typical for a second-order scheme. The numerical dispers
induced by sharp gradients, can be reduced by an appropriate choice of the relaxe
parameter or by lattice refinements. Its accuracy has shown to be less than that of hig
order finite element schemes, but is obtained at much lower computational costs. He
for (3-D) problems with a large computational domain or with a complicated geometry t
simple and straightforward lattice Boltzmann scheme can be a valuable choice.

The equivalence of the lattice Boltzmann scheme with the Lax—Wendroff scheme i
theme worthy of further investigation. This might reveal the relationship of the LB scher
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with other numerical schemes and may eventually lead to the crossover of ideas and con:
between the two research areas, which still evolve independently.

Finally, we point out the value of studying simple physical phenomenon like (convectic
diffusion with the lattice Boltzmann method. These problems are ideal for investigati
fundamental aspects of the LB methodology and further extensions to it. As such, we t
been able to extend the traditional methodology to irregular grids. Likewise, other extensi
of the methodology like variable timestepping, boundary conditions, and adaptive gri
etc., can be studied. Once established for simple physical phenomena, it can take little €
to apply these extensions to more complicated phenomena like hydrodynamics.

Hence, the LB schemes presented in this paper can be the starting point for more con
schemes like (1) third-order accurate convection-diffusion schemes (forregular andirreg
grids), and (2) hydrodynamics schemes for irregular grids. Both these schemes require
third-order velocity moments are satisfied. These constraints can be satisfied by takil
larger particle velocity set; (for a 2-D lattice a 13-velocity set with rest particles will
probably suffice). If these schemes can be established, they will mean a major step ir
further development of the lattice Boltzmann method.

APPENDIX: RELATION WITH FINITE DIFFERENCE SCHEMES

The lattice-BGK scheme is identical to a Lax—Wendroff finite difference scheme, if tt
relaxation parameter is set equakie= 1. Below, this relation is shown for a 1-D Bravais
lattice. In this case the diffusion coefficient is given by= %cﬁAt, and the grid Fourier
number is equal t60* = gcg/cf. The Courant number is defined@s=u/c;.

The change of density in time at lattice skés described by

peX.t+ A =) g t+A) =) glx—cA,b)

= 010X — AX, 1) + go%(x, t) + g3 (X + AX, t). (40)

With ¢2, = c?, the equilibrium distribution functions are

95°(¢) = pg(x)[1 — 2F0* — Cr?] (41)

g (X — AX) = pg(X — AX) {Fo* + %Cr + %Crz} (42)
eq 5 1 1 2

0, (X + AX) = pg(X + AX) |Fo* — ECrJr ECr . (43)

After substitution in Eq. (40) it follows that

1
= (Fo* + 2Cr2) [pg(X + AX, 1) 4+ pg(X — AX, t) — 2pg(X, 1)]

1
— ECr[,og(x + AX, 1) — pg(x — AX, t)]. (44)

This expression is identical to the finite difference scheme with “so-called” optimal u
winding [16], which is actually a one-step second-order Lax—Wendroff scheme [19].
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In the limit of low Courant number€r — 0), the Lax—Wendroff scheme is identical with

the forward time central space differencing. Whereas, in the opposite limit of high Cour:
numbers Cr — 1), this scheme is identical with forward time full upwind differencing.
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